3.540 \(\int \frac{\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=125 \[ -\frac{2 a^2}{b d \left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}}+\frac{i \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{3/2}}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{3/2}} \]

[Out]

(I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d) - (I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/
Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) - (2*a^2)/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.227634, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3542, 3539, 3537, 63, 208} \[ -\frac{2 a^2}{b d \left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}}+\frac{i \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d (a-i b)^{3/2}}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d (a+i b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d) - (I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/
Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) - (2*a^2)/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 3542

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx &=-\frac{2 a^2}{b \left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}+\frac{\int \frac{-a+b \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=-\frac{2 a^2}{b \left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}-\frac{\int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 (a-i b)}-\frac{\int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 (a+i b)}\\ &=-\frac{2 a^2}{b \left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (i a-b) d}+\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (i a+b) d}\\ &=-\frac{2 a^2}{b \left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{(a-i b) b d}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{(a+i b) b d}\\ &=\frac{i \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{(a-i b)^{3/2} d}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{(a+i b)^{3/2} d}-\frac{2 a^2}{b \left (a^2+b^2\right ) d \sqrt{a+b \tan (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.149714, size = 119, normalized size = 0.95 \[ \frac{b (b-i a) \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{a+b \tan (c+d x)}{a-i b}\right )-(a-i b) \left (-i b \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{a+b \tan (c+d x)}{a+i b}\right )+2 a+2 i b\right )}{b d \left (a^2+b^2\right ) \sqrt{a+b \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(b*((-I)*a + b)*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)] - (a - I*b)*(2*a + (2*I)*b - I
*b*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b)]))/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]
)

________________________________________________________________________________________

Maple [B]  time = 0.036, size = 1937, normalized size = 15.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x)

[Out]

-1/4/d/b/(a^2+b^2)^2*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(
2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*b/(a^2+b^2)^2*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/
2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/4/d/b/(a^2+b^2)^(5/2)*ln(b*tan(d*x+c)+a+(a+b*
tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-1/4/d*b^3/(
a^2+b^2)^(5/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2
+b^2)^(1/2)+2*a)^(1/2)+1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2
*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+1/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^
(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+1/d*b/(
a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a
^2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(
1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^5+1/d*b^3/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-
2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-3/d*
b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/
2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-4/d*b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*
x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+1/4/d/b/(a^2+b^2)^2*ln((a+b*tan(
d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+
1/4/d*b/(a^2+b^2)^2*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/d/b/(a^2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-
b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4+1/4/d*b^3/(a^2+b^2)^(5/2)*ln((a+b*tan(d*x+c)
)^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d/b/(a^2
+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-1/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+
2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a-1/d*b/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a
)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d
/b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2
))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^5-1/d*b^3/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(
1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+3/d*b^3/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^
(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)
)*a+4/d*b/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c
))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-2*a^2/b/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 4.11416, size = 12296, normalized size = 98.37 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^5*cos(d*x + c)^2 + 2*(a^9*b
^2 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*d^5*cos(d*x + c)*sin(d*x + c) + (a^8*b^3 + 4*a^6*b^5 + 6*a^4*
b^7 + 4*a^2*b^9 + b^11)*d^5)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)
*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((9*a^4*b^2 - 6*a^2
*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*(1/((a^6 + 3
*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*arctan(((3*a^12 + 14*a^10*b^2 + 25*a^8*b^4 + 20*a^6*b^6 + 5*a^4*b^8 -
2*a^2*b^10 - b^12)*d^4*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a
^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^9 + 8*a^7*b^2 + 6*a
^5*b^4 - a*b^8)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*
b^8 + 6*a^2*b^10 + b^12)*d^4)) + sqrt(2)*(2*(a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b^8 + 6*a^3*
b^10 + a*b^12)*d^7*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b
^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (a^10 + 5*a^8*b^2 + 10*a^6*b
^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 +
20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4
 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*
sqrt(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8 + b^10)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*
d^4))*cos(d*x + c) + sqrt(2)*((9*a^8*b^3 + 12*a^6*b^5 - 2*a^4*b^7 - 4*a^2*b^9 + b^11)*d^3*sqrt(1/((a^6 + 3*a^4
*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*a^5*b^3 - 6*a^3*b^5 + a*b^7)*d*cos(d*x + c))*sqrt((a^6 + 3*a
^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a
^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*a^5*b^2 - 6*a^3*b^4 + a*b^6)*cos(d*x + c) + (9*a^4*b^3 - 6*a^2*b^5
+ b^7)*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4) + sqrt(2)*(2*(3*a^15*b
+ 17*a^13*b^3 + 39*a^11*b^5 + 45*a^9*b^7 + 25*a^7*b^9 + 3*a^5*b^11 - 3*a^3*b^13 - a*b^15)*d^7*sqrt((9*a^4*b^2
- 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(
1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^12*b + 14*a^10*b^3 + 25*a^8*b^5 + 20*a^6*b^7 + 5*a^4*b^9 -
 2*a^2*b^11 - b^13)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*
a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3
*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x
+ c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4))/(9*a^4*b^2 - 6*a^2*b
^4 + b^6)) + 4*sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^5*cos(d*x + c)^2 + 2
*(a^9*b^2 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*d^5*cos(d*x + c)*sin(d*x + c) + (a^8*b^3 + 4*a^6*b^5 +
 6*a^4*b^7 + 4*a^2*b^9 + b^11)*d^5)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3
*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((9*a^4*b^2
- 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*(1/((
a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*arctan(-((3*a^12 + 14*a^10*b^2 + 25*a^8*b^4 + 20*a^6*b^6 + 5*a^
4*b^8 - 2*a^2*b^10 - b^12)*d^4*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^
6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^9 + 8*a^7*b
^2 + 6*a^5*b^4 - a*b^8)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 +
 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - sqrt(2)*(2*(a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b^8
+ 6*a^3*b^10 + a*b^12)*d^7*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 +
15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (a^10 + 5*a^8*b^2 +
10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^
8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6
*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4
+ b^6))*sqrt(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8 + b^10)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4
 + b^6)*d^4))*cos(d*x + c) - sqrt(2)*((9*a^8*b^3 + 12*a^6*b^5 - 2*a^4*b^7 - 4*a^2*b^9 + b^11)*d^3*sqrt(1/((a^6
 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*a^5*b^3 - 6*a^3*b^5 + a*b^7)*d*cos(d*x + c))*sqrt((a
^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^
2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a
^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*a^5*b^2 - 6*a^3*b^4 + a*b^6)*cos(d*x + c) + (9*a^4*b^3 - 6*
a^2*b^5 + b^7)*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4) - sqrt(2)*(2*(3
*a^15*b + 17*a^13*b^3 + 39*a^11*b^5 + 45*a^9*b^7 + 25*a^7*b^9 + 3*a^5*b^11 - 3*a^3*b^13 - a*b^15)*d^7*sqrt((9*
a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4
))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^12*b + 14*a^10*b^3 + 25*a^8*b^5 + 20*a^6*b^7 + 5*a
^4*b^9 - 2*a^2*b^11 - b^13)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b
^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3
*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*
cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4))/(9*a^4*b^2 -
 6*a^2*b^4 + b^6)) + sqrt(2)*((a^4*b - b^5)*d*cos(d*x + c)^2 + 2*(a^3*b^2 + a*b^4)*d*cos(d*x + c)*sin(d*x + c)
 + (a^2*b^3 + b^5)*d - ((a^7*b - 3*a^5*b^3 - a^3*b^5 + 3*a*b^7)*d^3*cos(d*x + c)^2 + 2*(a^6*b^2 - 2*a^4*b^4 -
3*a^2*b^6)*d^3*cos(d*x + c)*sin(d*x + c) + (a^5*b^3 - 2*a^3*b^5 - 3*a*b^7)*d^3)*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a
^2*b^4 + b^6)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqr
t(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^
4 + b^6)*d^4))^(1/4)*log(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8 + b^10)*d^2*sqrt(1/((a^6 + 3*a^4*b^2
 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + sqrt(2)*((9*a^8*b^3 + 12*a^6*b^5 - 2*a^4*b^7 - 4*a^2*b^9 + b^11)*d^3*
sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*a^5*b^3 - 6*a^3*b^5 + a*b^7)*d*cos(d*x +
 c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^
4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x
+ c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*a^5*b^2 - 6*a^3*b^4 + a*b^6)*cos(d*x + c) + (9*
a^4*b^3 - 6*a^2*b^5 + b^7)*sin(d*x + c))/cos(d*x + c)) - sqrt(2)*((a^4*b - b^5)*d*cos(d*x + c)^2 + 2*(a^3*b^2
+ a*b^4)*d*cos(d*x + c)*sin(d*x + c) + (a^2*b^3 + b^5)*d - ((a^7*b - 3*a^5*b^3 - a^3*b^5 + 3*a*b^7)*d^3*cos(d*
x + c)^2 + 2*(a^6*b^2 - 2*a^4*b^4 - 3*a^2*b^6)*d^3*cos(d*x + c)*sin(d*x + c) + (a^5*b^3 - 2*a^3*b^5 - 3*a*b^7)
*d^3)*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^
5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b
^6))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4)*log(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8
+ b^10)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) - sqrt(2)*((9*a^8*b^3 + 12*a^6*b^5
- 2*a^4*b^7 - 4*a^2*b^9 + b^11)*d^3*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*a^5*
b^3 - 6*a^3*b^5 + a*b^7)*d*cos(d*x + c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^
6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos
(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*a^5*b^2 - 6
*a^3*b^4 + a*b^6)*cos(d*x + c) + (9*a^4*b^3 - 6*a^2*b^5 + b^7)*sin(d*x + c))/cos(d*x + c)) + 8*(a^3*cos(d*x +
c)^2 + a^2*b*cos(d*x + c)*sin(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/((a^4*b - b^5)*d
*cos(d*x + c)^2 + 2*(a^3*b^2 + a*b^4)*d*cos(d*x + c)*sin(d*x + c) + (a^2*b^3 + b^5)*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{2}{\left (c + d x \right )}}{\left (a + b \tan{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**2/(a + b*tan(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (d x + c\right )^{2}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(tan(d*x + c)^2/(b*tan(d*x + c) + a)^(3/2), x)